
Random Projections
and Dimension Reduction

Rishi Advani — Cornell University
Madison Crim — Salisbury University
Sean O’Hagan — University of Connecticut

Summer@ICERM 2020

Thank you to ICERM for (virtually) hosting us this summer, and thank you
to all the staff for making this program possible. Thank you to our organizers,
Akil Narayan and Yanlai Chen, along with our TAs, Justin Baker and Liu Yang,
for supporting us throughout this program.

Contents

1 Introduction 2
1.1 Low-rank Approximation . 2
1.2 Kernel Methods . 2

2 Johnson-Lindenstrauss Lemma 3

3 Low-rank Approximation 6
3.1 Singular Value Decomposition . 6

3.1.1 Deterministic SVD . 6
3.1.2 Randomized SVD . 7

3.2 Interpolative Decomposition . 8
3.2.1 Deterministic ID . 8
3.2.2 Randomized ID . 9

3.3 Fixed-precision approximation problem 9

4 Kernel Methods 10
4.1 Deterministic Kernel Methods . 10
4.2 Kernel PCA . 10
4.3 Kernel SVM . 11
4.4 Randomized Fourier Features . 11
4.5 Sampling over a range of parameters 12

5 Coding Investigations 13
5.1 Johnson-Lindenstrauss Lemma 13
5.2 Random Decompositions . 15

5.2.1 Interpolative Decomposition 15
5.2.2 Singular Value Decomposition 16
5.2.3 Eigenfaces . 19

5.3 Least-Squares Approximation . 21
5.4 Randomized Kernel Methods . 23

5.4.1 Kernel PCA . 24
5.4.2 Kernel SVM . 25

6 Conclusion 27

References 28

1

1 Introduction

This paper, broadly speaking, covers the use of randomness in two main areas:
low-rank approximation and kernel methods.

1.1 Low-rank Approximation

Low-rank approximation is very important in numerical linear algebra. Many
applications depend on matrix decomposition algorithms that provide accurate
low-rank representations of data. In modern problems, however, various factors
make this hard to accomplish:

� the amount of data and amount of features is absurdly large at times

� we often have missing or inaccurate data

� it may not be possible to simultaneously store all the data in memory

One solution to these problems is the use of random projections. Instead of
directly computing the matrix factorization, we randomly project the matrix
onto a lower-dimensional subspace and then compute the factorization. Often,
we are able to do this without signi�cant loss of accuracy.

We describe how randomization can be used to create more e�cient algo-
rithms to perform low-rank matrix approximation, as well as introducing a
novel randomized algorithm for matrix decomposition. Compared to standard
approaches, random algorithms are often faster and more robust. With these
randomized algorithms, analyzing massive data sets becomes tractable.

1.2 Kernel Methods

Kernel methods are almost diametrically opposite from low-rank approximation.
The idea is to project low-dimensional data into a higher-dimensional `feature
space,' such that it is linear separable in the feature space. This enables the
model to learn a nonlinear separation of the data.

As before, with large data matrices, computing the kernel matrix can be expen-
sive, so we use randomized methods to approximate the matrix.

In addition, we propose an extension of the random Fourier features kernel in
which hyperparameter values are randomly sampled from an interval or Borel
set.

2

The experiments discussed in this paper can be found on our GitHub repository
and website using the following links:

� https://github.com/rishi1999/random-projections

� https://rishi1999.github.io/random-projections/

2 Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma, �rst appearing in [JL84], is a fundamental
result in this area and falls under the umbrella ofconcentration of measure.

Simply put, the Johnson-Lindenstrauss Lemma describes the existence of a map
from a higher dimensional spaceRd into a lower dimensional spaceRk that
preserves pairwise distances between then points up to an error tolerance 0<
" < 1, with k on the order of " � 2 logn.

In applications with which we are concerned, the data (collection of points) can
be viewed as a matrixA 2 Rn � d, with each row representing a point in Rd, and
the map in question can be represented by a matrix inRk � d.

Lemma (Johnson-Lindenstrauss). Let f x1; :::; xn g be a collection of data points
in Rd. Let k 2 N such that

k > C �
logn

"2 (C � 24)

Then there exists a linear mapf : Rd ! Rk such that for any x i ; x j 2 X ,

(1 � ") kx i � x j k2
2 � k f (x i) � f (x j)k2

2 � (1 + ") kx i � x j k2
2

Remark. The proof we give is probabilistic. Reconstructing the proof from
[Mic09], we will take a random rectangular matrix with entries drawn from a
standard normal distribution, �rst show that the expectation of the squared
2-norm of the low-dimensional projection of an arbitrary vector in Rn is the
equivalent to its original squared 2-norm in higher dimensional space, and then
show that we can be within an arbitrary tolerance with positive probability.

Proof. Let u 2 Rd and let R 2 Rk � d, where every entry in R is drawn i.i.d.
from a standard normal distribution. Set v = 1p

k
Ru. Here the coe�cient 1p

k
represents a normalization factor.

Proposition. E[kvk2
2] = kuk2

2

3

Proof.

E[kvk2
2] = E

h kX

i =1

v2
i

i

=
kX

i =1

E [v2
i]

=
kX

i =1

1
k

E [(
X

j

Rij uj)2]

=
kX

i =1

1
k

X

1� j;l � d

uj ul E[Rij Ril]

=
kX

i =1

1
k

X

1� j;l � d

uj ul � jl

=
kX

i =1

1
k

dX

j =1

u2
j =

dX

j =1

u2
j = kuk2

2

Now, we have determined the mean of our random variablekvk2
2, and it remains

to show that its value concentrates around this mean. More speci�cally, we want
to put an upper bound on the probability that we are arbitrarily far from the
mean, and later to bound the probability of the union of all of these events to
reach the desired conclusion.

Proposition. Pr(kvk2
2 � (1 + ")kuk2

2) � n� 2

Proof. We de�ne a random variable X 2 Rk as a scaled version ofv, such that
X =

p
k

kuk v. Thus, each elementx i = 1
kuk RT

i u for i = 1 : : : k. Additionally,

denote x = kX k2
2 =

P k
i =1 x2

i = kkvk2
2

kuk2
2

. Since vi = 1p
k

RT
i ui , we have vi �

N (0; kuk2
2

k), and thus x i � N (0; 1).

First, substitute to obtain

Pr(kvk2
2 � (1 + ")kuk2

2) = Pr(x � (1 + ")k):

Exponentiating both sides and multiplying by e� for any arbitrary real � yields

Pr(e�x � e� (1+ ")k):

4

Next, we use Markov's inequality, which states that for a nonnegative random
variable X , we have Pr(X � a) � E[X]

a , in order to get the upper bound

Pr(e�x � e� (1+ ")k) �
E[e�x]

e� (1+ ")k
:

Since x i , and thus x2
i , is independent, the expectation of the product equates

to the product of the expectation, which yields equality with the product

kY

i =1

E[e�x 2
i]

e� (1+ ")k
:

Sincex i , and thus x2
i , is identically distributed, we obtain the �nal upper bound:

�
E[e�x 2

i]
� k

e� (1+ ")k
:

To evaluate the expectation in the numerator, note that, sincex i � N (0; 1), we
have x2

i � � 2
1. We now use the moment generating function from mathematical

statistics: observe that if X � � 2
1, we haveM X (t) = E[etX] = (1 � 2t) � 1=2.

Thus, this yields

: : : =
� 1

p
1 � 2� � e� (1+ ")

� k
;

and since this is true for any arbitrary 0 < � < 1
2 , we may choose� = "

2(1+ ") ,
and obtain

: : : = [(1 + ")e� "]k=2:

For the next step, we use an inequality built on the Taylor expansion of log(1+a).

Lemma. For a positive real a,

log(1 + a) � a �
a2

2
+

a3

3
:

Proof. Let f (a) = exp(a � a2

2 + a3

3) � (1 + a). Taking the derivative, we obtain

f 0(a) = (a2 � a+1) exp(a� a2

2 + a3

3) � 1. This derivative is always positive, which
can be veri�ed by taking its derivative: f 00(a) = exp(1 =6a(6 � 3a + 2a2))a2(3 �
2a + a2), which is always positive on a > 0 as the exponential and the two
polynomial factors are all strictly positive on a > 0. Since we knowf 0(0) = 0,
and f 00(a) > 0 for a > 0, this meansf 0(a) > 0 for a > 0, and thus sincef (0) = 0,
we know f (a) > 0 for a > 0. Thus, exp(a � a2

2 + a3

3) > 1 + a for a > 0. Taking
the logarithm of both sides yields the desired result.

5

Using this lemma, we achieve the upper bound

: : : � exp
�

� (
"2

2
�

"3

3
)
k
2

�
� e� 2 log n � n� 2 ;

where the �rst inequality comes from our bound on k.

We can apply a similar procedure to obtain the bound

Pr(kvk2
2 � (1 � ")kuk2

2) � n� 2 ;

and we may combine these using the subadditivity of probability (the probability
of of a union of events is less than or equal to the sum of their probabilities) to
yield

Pr

kvk2
2 62

�
(1 � ")kuk2

2; (1 + ")kuk2
2

�
!

� 2n� 2 :

Now, since u is an arbitrary vector in Rd, we may let u = x i � x j for x i ; x j ,
i; j � n, and de�ne the event

E ij := kf (x i) � f (x j)k2
2 62

�
(1 � ")kx i � x j k2

2; (1 + ")kx i � x j k2
2

�
:

We then obtain the union bound

Pr
� [

i � n
j<i

E ij

�
�

X

i � n
j<i

Pr(E ij) �
n(n � 1)

2
� 2n� 2 = 1 �

1
n

:

Thus, the probability that all of the pairwise distances fall within the desired
intervals is given by the complement, and we obtain a lower bound of1n . Since
the probability of the event occurring is greater than 0, there must exist a map
that satis�es the restrictions we require, concluding the proof.

3 Low-rank Approximation

3.1 Singular Value Decomposition

3.1.1 Deterministic SVD

Given any matrix A 2 Rm � n , we can expressA using the singular value decom-
position:

A = Um � m � m � n V �
n � n (1)

6

where U and V are unitary matrices and � is a diagonal matrix with positive
diagonal entries � 1 � � 2 � :::: � � r where r is the rank of matrix A. The � i 's
are called the singular values ofA. We note that the �rst r columns of U will
form an orthonormal basis for the column space ofA [16]. Likewise, the �rst
r columns of V will form an orthonormal basis for the row space ofA. The
orthonormal columns of U and V also contain the eigenvectors for the matrices
AA � and A � A [16]. This can be shown using the singular value decomposition
of A to get the following eigendecompositions:

1. A � A = (U� V �) � (U� V �) = V � � U � U� V � = V � � � V � = V � 2V � :

2. AA � = (U� V �)(U� V �) � = U� V � V � � U � = U�� � U � = U� 2U � :

These properties of the singular value decomposition will become useful in Sec-
tion 5.2.3 when we experiment with SVD through an eigenface example.

3.1.2 Randomized SVD

Given a matrix A, we want to �nd a matrix Q with orthonormal columns, such
that A � QQ� A [HMT09].

The matrix QQ� is an orthogonal projector. A projector is a matrix that squares
to itself. This means that applying it a second time to a given vector will do
nothing because the vector has already been projected into the desired subspace.
QQ� is a projector because

(QQ�)2 = (QQ�)(QQ�)

= Q(Q� Q)Q�

= QIQ �

= QQ� :

It is an orthogonal projector because it is Hermitian (equal to its conjugate
transpose). The kernel and row space of a matrix are orthogonal complements
of each other. So, the kernel and column space are orthogonal i� the matrix is
Hermitian.

We want an orthogonal projector primarily for two reasons. One reason is nu-
merical stability { the operator norm of an orthogonal projector is 1. Another
reason is that it projects each vector to the closest possible vector in the sub-
space. Since it's not \stretching" vectors, distances are reasonably preserved.
With a general projection, some vectors will be arbitrarily grown and others
shrunk, depending on the speci�c projector (so it's not inherent to the data).

Using ideas from [HMT09] we introduce randomness by constructing an � k
random Gauissan matrix
. We set Y = A
 and construct the matrix Q whose

7

columns for an orthonormal basis forY . Then an approximate SVD can be
computed as follows:

Let B = Q� A. Then, we haveQB = QQ� A � A. We then compute the SVD
of the small (relative to A) matrix B .

B = ~U� V � (2)

We take U = Q ~U, and we now haveA � U� V � . For this to be an exact SVD,
we would need to haveU unitary, but since we are only trying to �nd a low-rank
SVD approximation, it will in fact not be square, so the best we can do is ensure
that it has orthonormal columns. This is equivalent to requiring U � U = I . We
have

U � U = (Q ~U) � (Q ~U) = ~U � Q� Q ~U = ~U � ~U = I :

Note that traditionally in SVD, U would need to be a square matrix, but here
we have a rectangular matrix that contains only approximations to the most
dominant singular vectors, not all of them.

Thus, �nally, we have constructed a randomized low-rank approximation for the
SVD of the matrix A.

3.2 Interpolative Decomposition

3.2.1 Deterministic ID

Given a matrix A 2 Rm � n we can come up with a low-rank matrix approxima-
tion that uses A's own columns. As stated in [Yin+18], by reusing the columns
of A, we are able to save space and keep the structure of the columns.

The interpolative decomposition can be computed using the column-pivotedQR
factorization:

AP = QR (3)

where P is a n � n permutation matrix moving picked columns to the front.
The reordering of the columns ofA gives us a nice skeleton for the ID. Namely,
the column-pivoted QR chooses the \best"k columns from A.

To obtain our low-rank approximation we form the submatrix Qk formed by the
�rst k columns of Q. Thus we have the approximation:

A � Qk Q�
k A (4)

which gives us a particular rank k projection of A.

8

3.2.2 Randomized ID

We introduce a novel method to compute a randomized interpolative decompo-
sition.

We randomly sample (without replacement) p columns from the n columns of
A, where p > k . Let A0 denote the submatrix formed by thesep columns. We
then perform a column-pivoted QR factorization on A0:

A0P = QR (5)

Similar to deterministic ID, we take the �rst k columns of Q to form the sub-
matrix Qk , giving us the decomposition

A � Qk Q�
k A ; (6)

where Qk Q�
k A is a rank k projection of A.

3.3 Fixed-precision approximation problem

Given a �xed approximation error " and a matrix A, we want to �nd a matrix
Q with orthonormal columns where k = k(") such that:

kA � QQ� Ak � " (7)

In order for A to be approximately equal to QQ� A the distance between the
two matrices should be within the range of error" .

Let D = A � QQ� A. Since Q� A is a projection of the columns ofA onto a
lower dimensional space, the Johnson-Lindenstrauss lemma guarantees that if
k > 24

3� 2 � 2� 3 logn [Mic09], there exists such aQ such that any row D i of D ,

kD i k2
2 < � . If we set � = " 2

n , and let D denote A � QQ� A, then

kA � QQ� Ak =

vu
u
t

nX

i =1

kD i k2
2 �

p
n� = ":

Thus, a bound of k > 24n 3

3" 4 n � 2" 6 logn guarantees the existence of aQ in order
such that kA � QQ� Ak < " in the Frobenius norm.

9

4 Kernel Methods

4.1 Deterministic Kernel Methods

Kernel methods are ubiquitous in the �elds of machine learning and statis-
tics. These methods enable us to learn a nonlinear decision boundary using a
linear classi�cation algorithm. We do this by mapping the data from the low-
dimensional input space into a high-dimensional feature space in which the data
is linearly separable.

Since we only need to know the inner products between pairs of vectors in the
feature space, we don't have to explicitly compute the feature map. This is much
more computationally e�cient. Letting � denote the explicit high dimensional
mapping, we need only compute

k(x; y) = h� (x); � (y)i (8)

for each pair (x; y) in the input space.

For many feature maps, there exist simple kernel matrices that we can use to
perform easier computations:

� Polynomial kernel

� Radial Basis Function (RBF) / Gaussian kernel

� etc.

4.2 Kernel PCA

Principal component analysis (PCA) is a common linear method for dimen-
sionality reduction. Given a n � d data matrix A, the goal is to �nd a n � k
representation, with k < d , that captures most of the information of the data.

This can be done by column centering the data, labelling this asA0, and com-
puting an eigendecomposition of the covariance matrix

1
n

AT
0 A0 = Q� Q� 1 (9)

Taking the �rst k eigenvectors inQ in order of decreasing eigenvalues yields
the k best principal components of the data: an orthogonal set of k linear
combinations of the original features that captures the most variance in the
data.

10

Often, when data is not linearly separable, we use kernel methods to project the
data into a higher dimensional space before �nding principal components. One
trade o� is that the principal components no longer represent explicit linear
combinations of the original features, but rather linear combinations of the
transformed features.

4.3 Kernel SVM

If we want to train a model on a set of labeled data, one option is to use a Support
Vector Machine (SVM). If the data is linearly separable, this construct will
�nd the (d� 1)-dimensional hyperplane that best separates thesed-dimensional
points into their respective categories. In the simplest case, we have points in a
plane, and we are separating them with a line.

When we say we want to �nd the 'best' separation, we mean that we want
to �nd the separation that maximizes the minimum distance of the points to
the hyperplane. This distance that we are trying to maximize is the margin.
The intuition is that we want to have as clear of a separation between our two
clusters of data points as possible.

If the data is not linearly separable, we can use the kernel trick to salvage the
classi�cation scheme. We project the data into a high-dimensional space, where
the data is highly likely to be separable, and classify it in that feature space.

4.4 Randomized Fourier Features

In [RR08], a randomized procedure for approximating the kernel is described
by creating a low-dimensional mapz into Rm such that

k(x; y) = h� (x); � (y)i �
1
m

z(x)z(y)T : (10)

This can be done with the method of random Fourier features: given a shift-
invariant real-valued kernel k(x; y) on Rd � Rd, if it is normalized such that
k(x; y) � 1 for eachx; y, then Bochner's theorem tells us that its Fourier trans-

11

form p(w) is a probability distribution. Then, we may approximate

k(x; y) =
Z

Rd
p(w)e� jw T (x � y) dw

=
Z

Rd
p(w)e� jw T x ejw T y dw

�
1
m

mX

i =1

e� jw T
i x ejw T

i y

�
1
m

mX

i =1

cos(wT
i x + bi) cos(wT

i y + bi)

where wi � p(w), bi � Uniform(0; 2�). The �rst approximation is from Monte
Carlo sampling to approximate the integral. For a given m, let

z(x) =
mX

i =1

cos(wT
i x + bi): (11)

to yield our approximation 1
m z(x)z(y)T .

As an example, consider a standard RBF kernel de�ned by

k(x; y) = exp
�
�
 kx � yk2

2

�
: (12)

We can approximate this kernel usingm random Fourier features as described
above, with wi drawn from a multivariate normal distribution with mean 0 and
covariance 2
I .

Let X 2 Rn � d be our data matrix. De�ne the Kernel matrix K 2 Rn � n as
K ij = k(x i ; x j), and express our approximationK̂ = 1

m z(X)z(X)T [Lop+14].
Note that K̂ is a rank m approximation to K , and thus while these methods
appear to be new, they are intimately connected to the randomized matrix
decompositions earlier.

4.5 Sampling over a range of parameters

In some cases, an experimenter may wish to use the random Fourier features
kernel approximation to approximate a parametric family of kernels, but may
not know exactly what parameter choice to make. We introduce a novel method
involving Monte Carlo sampling over a parametric range:

Let k(x; y; �) denote a real valued, normalized (k(x; y; �) � 1), shift-invariant
parametric family of kernels on Rd � Rd, with parameters � 2 E � R` , where
E is the (Borel) parameter domain. Let p(�) be a probability distribution

12

given by the inverse Fourier transform of k. For a given m; q, we may sample
� 1; :::; � q � Uniform(E) and subsequentlyws1 ; : : : ; wsm � p(� s) for s = 1 ; : : : ; q
and approximate the kernel, sampling overE :

k(x; y) =
Z

E

Z

Rd
p(�)e� jw T (x � y) dwd�

�
1
q

mX

s=1

Z

Rd
p(w; � s)e� jw T

s (x � y) dw

�
1

mq

qX

s=1

mX

i =1

e� jw T
s i

x ejw T
s i

y

�
1

mq

qX

s=1

mX

i =1

cos(wT
si

x + bi) cos(wT
si

y + bi)

where bi � Uniform(0; 2�).

This procedure may be useful in cases where e�ciency is desired, and an optimal
hyperparameter value is unknown, but instead a range is known. When the
dataset is too large to test individual values in this range speci�cally (i.e. a grid
search), this method may help to provide decent results at a low computational
cost.

5 Coding Investigations

5.1 Johnson-Lindenstrauss Lemma

The code for this experiment can be found athttps://rishi1999.github.io/
random-projections/notebooks/html/JL_Lemma.html

The Johnson-Lindenstrauss lemma is a powerful tool in dimension reduction.
This lemma shows that when randomly projecting n points in any dimension
into a space of dimensionO(log n) that pairwise distances are approximately
preserved. In this section, we will provide experimental results to support one
of the propositions instrumental to the proof of JL lemma from [Mic09]:

Proposition. Let u 2 Rd be �xed, and let R be a random matrix with Rij �
N (0; 1). De�ne v = 1p

k
Ru such that v 2 Rk . Then

E [kvk2
2] = kuk2

2 (13)

This proposition is important as it allows us to randomly project a vector from
a d-dimensional space into ak-dimensional space while preserving the squared

13

Euclidean norm of the original vector in expectation. Algorithm 1 will allow us
to test the proposition. It proceeds roughly as follows:

1. Find the squared norm of a �xed high-dimensional vector

2. Randomly project it 1000 times, and calculate the average squared norm
of the projections

3. Calculate the error between these two values

Algorithm 1: JL lemma - error in random projections

create fixed unit vector u
u = random . randn (d ,1)
u = u / np . l inalg .norm(u)

number of samples we wil l generate
i terat ions = 10000
v_errors = np. empty (i terat ions)

for i in range (i terat ions):
construct random Gaussian matrix
R = random . randn (k ,d)
v = 1/ math . sqrt (k) * R @ u
store squared 2-norm of v
v_errors [i] = np .sum(np. square (v)) - 1

print (f 'Mean : {np .mean (v_errors)} ')
print (f 'Stdev : {np .std (v_errors)} ')
plt . hist (v_errors , bins =100)

To conduct this experiment we will let u 2 R1000 and v 2 R10. When we ran
this algorithm, it computed an error of less than 0:01. Figure 1 shows that the
relative error approximately centers around a mean value of 0. This shows that,
in practice, the statement E [kvk2

2] = kuk2
2 does hold whenu and v are de�ned

as in the above proposition.

14

Figure 1: Error Between Squares Norms in High and Low Dimensional Spaces

5.2 Random Decompositions

The code for the following SVD/ID experiments can be found at https://
rishi1999.github.io/random-projections/notebooks/html/Image_Compression.
html

Randomness is a valuable tool for performing low-rank matrix approximations.
These e�cient random methods for performing approximate matrix factoriza-
tion enable us to process very large data sets at signi�cantly lowered costs.
Although random methods tend to be less accurate than deterministic meth-
ods, they can be much more e�cient.

In order to con�rm that randomness does in fact improve low-rank approxi-
mations, we will experiment with two deterministic methods along with two
random methods. We will then compare their relative errors and times by test-
ing 620 images from LFW dataset [Hua+07] to form a 620� 187500 transpose
matrix.

5.2.1 Interpolative Decomposition

Given a matrix A 2 Rm � n , we can compute an interpolative decomposition
(ID), a low-rank matrix approximation that includes the original columns of A.
One way we can do this is through the column-pivotedQR factorization

AP = QR ; (14)

whereP is a permutation matrix. We take the �rst k columns from Q to obtain
the submatrix Qk . Then we have the following low-rank decomposition:

A � Qk Q�
k A : (15)

15

In Algorithm 2, we use a new method described in Section 3.2.2 to compute a
randomized ID (RID).

Algorithm 2: Randomized ID - Column Pivoted QR

def random_id_rank_k (matrix , k , oversampl ing =10):
p = k + oversampl ing
m,n = A. shape
cols = np. random . choice (n , replace =False , size=p)
S = A[: , cols]
q , r = np . l inalg .qr (S , pivot ing = True)
q = q[: ,: k]
return q @ q.T @ A

Consider d; m; r where d is the deterministic matrix approximation, m is the
original data matrix, and r is the randomized matrix approximation. We can
then measure relative error for Figures 2 and 3 in the following way:

1. Compute absolute random error:ar = k(r � m)k2

2. Compute absolute deterministic error: ad = k(d � m)k2

3. Calculate the error of ar relative to ad: relative:error = (ar � ad)=ad

Upon running the algorithm, as expected, the relative error for the RID tends
to be higher than that of the ID. As we test the algorithm against higher values
of k, we see in �gure 2 that the random error does not decrease for larger rank
k approximations as quickly as the deterministic error.

Despite the RID producing less accurate results, it is signi�cantly more e�cient.
To show this the average time has been taken to test varying values ofk for both
methods of computing the interpolative decomposition. In Figure 2, it is shown
that the random time relative to the deterministic time does not appear to be
hardly growing at all as the value of k increases. Accordingly, the randomized
interpolative decomposition we have introduced here shows experimentally to
be very computationally e�cient.

5.2.2 Singular Value Decomposition

Given a matrix A 2 Rm � n we can express the matrix as a product of three
\special" matrices, the singular value decomposition (SVD):

A = Um � m � m � n V T
n � n

16

Figure 2: Random ID Error and Time Relative to Deterministic ID

where U, V , and � are the matrices de�ned in 3.1.1.

We can compute a randomized SVD (RSVD) by �rst generating a randomn � k
matrix
 [HMT09], and then forming the following m � k matrix Y :

Y = (AA �)q(A
) (16)

where q = 1 or q = 2. In practice with q = 0, [HMT09] tells us the algorithm
can cause the singular spectrum ofA to decay slowly and thus the greatest
singular values will not capture most of the variance.

Algorithm 3 will allow us to test the accuracy and e�ciency of this method
using the following steps to compute the RSVD ofA:

1. UseQR factorization to compute a matrix Q whose orthonormal columns
form a basis for the column space ofY .

2. Set B = Q� A

3. Compute the SVD factorization such that: B = U0� V �

4. Thus A � QQ� A = QB = QU0� V �

Note that we will be testing Algorithm 3 using real matrices.

The results of running Algorithm 3 for varying values of k shows that the error
for computing the RSVD is consistently slightly higher than computing the
SVD. In Figure 3, we compare the absolute error of the RSVD relative to the
absolute error of SVD as described in Section 5.2.1. This graph also shows the
average RSVD running time relative to the SVD running time. Figure 3 shows
us that the relative error is increasing. Although di�erent from the ID, this is
caused by our absolute error for SVD and RSVD decreasing at similar rates.
Figure 4 demonstrates why the explanation for the increase in relative error for

17

Algorithm 3: Randomized SVD

def random_svd_rank_k (A, k , power =1):
omega = random . randn (A. shape [1] ,k)
pow_matr ix = np. l inalg . matr ix_power (A @ A.T, power)
Y = pow_matr ix @ (A @ omega)
Q, R = np. l inalg .qr (Y)
B = Q.T @ A
U_tilde , Sigma , Vh = np. l inalg . svd (B)
U = Q @ U_ti lde
Sigma = np.diag (Sigma)
return U @ Sigma @ Vh [:k]

ID and SVD di�ers by showing the error for each method relative to the original
data. As expected the RSVD method runs at a faster rate for smaller values of
k than SVD. However, it can be seen in Figure 3 that as the values ofk increase,
the RSVD algorithm is not only less accurate than the SVD algorithm, but less
e�cient as well.

Figure 3: Random SVD Error and Time Relative to Deterministic SVD

From our experiments we see that, in general, SVD and RSVD have lower errors
than ID and RID, and thus more accurate approximations. However, RSVD is
far less computationally e�cient than RID. Not only does does the randomized
SVD lack e�ciency for higher values of k, but our randomized ID is surprisingly
just as e�cient for smaller values of k as it is for larger rank-k approximations.
Thus, when striving for e�ciency or using large datasets, the RID is strongly
preferred over RSVD.

18

Figure 4: Error Relative to Original Data

5.2.3 Eigenfaces

The code for the following experiment can be found athttps://rishi1999.
github.io/random-projections/notebooks/html/Eigenfaces.html

One application of the SVD includes solving the eigenface problem. Using ideas
from [BKP15] our eigenfaces experiment tests the LFW dataset [Hua+07]. This
dataset contains more than 13,000 images of faces where each image is a 250�
250. By applying SVD to these images we can extract the most dominant
features from each image, resulting in our set of eigenfaces.

Our algorithm starts with
attening each image to represent it as a vector of
length 250� 250� 3 = 187500. Note, we multiple by three to account for three
colors channels of the images. In our experiment we will only use 620 images
from the LFW dataset giving us a matrix A of size 187500� 620. To normalize
the data each column of the matrix will be subtracted by the mean face. This
step allows us to take away the features that each face has in common, leaving
each image with its distinctive features visible. GivenA with mean-subtracted
columns, SVD can be performed. The eigenfaces of the data are then given by
the columns of U. In our experiment we use both SVD and RSVD to compute
the eigenfaces ofA.

In Figure 7, we display the absolute random error relative to the absolute de-
terministic error as well as the random time relative to deterministic time. As
expected, given the experiment from Section 5.2.2, the relative error increases
since the absolute errors for SVD and RSVD are decreasing at similar rates,
which can be seen in Figure 8. It can also be seen that, as the value ofk, where
k is the number of columns ofU, increases, the relative time increases until the

19

Figure 5: Eigenfaces obtained using Deterministic SVD

Figure 6: Eigenfaces obtained using Randomized SVD

randomized method is running at about the same speed as the deterministic
method does.

Figure 7: Random SVD Error and Time Relative to Deterministic SVD

20

Figure 8: Error Relative to Original Data Matrix

5.3 Least-Squares Approximation

The code for the following experiment can be found athttps://rishi1999.
github.io/random-projections/notebooks/html/Least_Squares.html

When trying to solve the linear system of equationAx = b there is not always a
vector x that yields an exact solution. The solution can be approximated such
that kAx � bk2 is minimized where A is a full rank m � n matrix with m � n
and full column rank. To solve the least squares problem we have tested both
a deterministic method that uses QR factorization and a randomized method.

The deterministic method from [Ale18] used to calculate the linear least-squares
problem solution utilizes QR factorization to �nd a x � such that the equation
Ax = b is best approximated. SinceA has full column rank, A has a uniqueQR
factorization: A = QR. Using the normal equationsAT Ax = AT b the vector x
can be approximated:

1. (QR)T QRx = (QR)T b

2. RT QT QRx = RT QT b

3. SinceQ is an orthogonal matrix: RT Rx = RT QT b

4. R is an upper triangular matrix with positive diagonal entries. Thus R
has an inverse and so does its transpose. Thus the system can be solved
so that: x � = R� 1QT b

To test this method we use Algorithm 4 which generates a newA matrix and b
vector each run where the dimensions ofA are increasing.

As expected, as the dimensions forA increases so does the time it takes to run
the algorithm. Figure 9 shows that the absolute error is low for smaller matrices

21

Algorithm 4: Deterministic Least Squares Method

dims = np. arange (100 , 2000 , step =50)
def ls (dims):

t imes = []
for n in tqdm(dims):

m = 2 * n
A = np. random . randn (m,n)
b = np. random . randn (m ,1)

start = perf_counter ()
q , r = np . l inalg .qr (A)
qt = np . transpose (q)
c = qt @ b
rinv = np. l inalg . inv (r)
xls = rinv @ c
end = perf_counter ()

t imes . append (end - start)
return times

but continue to increase as the size of the matrix does. Overall, the absolute
error for this method shows reasonably accurate results.

Figure 9: E�ciency and Error of Deterministic Least Squares Approximation
Algorithm

In an attempt to �nd a more e�cient algorithm, we have created a random
method that solves the least squares problem. Given an integerk, this method
samplesk Gaussian vectorsx and keeps the vector that best minimizeskAx � bk2.
This algorithm is then run on many random A matrices and b vectors with
entries from a standard normal distribution. Unfortunately, this naive algorithm
was unable to beat the deterministic one. In Figure 10, the random method
proves not only to be less e�cient but it is far less accurate.

22

	Introduction
	Low-rank Approximation
	Kernel Methods

	Johnson-Lindenstrauss Lemma
	Low-rank Approximation
	Singular Value Decomposition
	Deterministic SVD
	Randomized SVD

	Interpolative Decomposition
	Deterministic ID
	Randomized ID

	Fixed-precision approximation problem

	Kernel Methods
	Deterministic Kernel Methods
	Kernel PCA
	Kernel SVM
	Randomized Fourier Features
	Sampling over a range of parameters

	Coding Investigations
	Johnson-Lindenstrauss Lemma
	Random Decompositions
	Interpolative Decomposition
	Singular Value Decomposition
	Eigenfaces

	Least-Squares Approximation
	Randomized Kernel Methods
	Kernel PCA
	Kernel SVM

	Conclusion
	References

